다발 제르브
틀:위키데이터 속성 추적 미분기하학에서 다발 제르브(틀:Llang)는 선다발을 일반화시킨 개념이다.
정의
U(1) 주다발은 다음과 같이 간주될 수 있다.
- U(1) 주다발은 (정수 계수) 2차 코호몰로지류이다. (즉, 주다발은 그 천 특성류에 의하여 분류된다.)
- U(1) 주다발은 어떤 열린 덮개에 대하여, 각 조각 위에 주어진 인자들로 구성된다. 이 경우, 각 들은 전이 함수들로 짜깁기되며, 이들은 공사슬 조건을 만족시켜야 한다.
- U(1) 주다발은 주다발의 일종이다. 즉, 구조를 갖는 전사 연속 함수이다.
이 세 정의들을 각각 다음과 같이 일반화시킬 수 있으며, 이들은 서로 동치이다.
각 정의에서, 다음이 주어졌다고 하자.
- 매끄러운 다양체
- 자연수 .
그렇다면, 위의 -다발 제르브의 개념을 정의할 수 있다. 0-다발 제르브는 U(1) 선다발과 같다.
코호몰로지류를 통한 정의
위의 -다발 제르브는 (정수 계수) 차 코호몰로지 군의 원소
이다.
열린 덮개를 통한 정의
위의 차 히친-채터지 제르브(틀:Llang)는 다음과 같은 데이터로 주어진다.[1]틀:Rp
이들은 다음 두 조건을 만족하여야 한다.
이 정의에서, 을 잡으면 U(1) 선다발의 정의를 얻는다. 즉, 매끄러운 다양체 위의 U(1) 선다발은 다음과 같은 데이터로 정의된다.
- 의 열린 덮개
- 모든 에 대하여, 전이 함수
이들은 다음 두 조건을 만족시켜야 한다. 모든 에 대하여,
- (공사슬 조건)
물론, 선다발의 동치를 적절히 정의하여야 한다.
위 정의는 나이절 히친과 데이비드 소미트라 채터지(틀:Llang, 틀:Llang)가 사용한 정의다. 마이클 머리가 사용한 정의는 더 일반적이며, 히친이 정의한 제르브는 머리가 정의한 국소 다발 제르브(틀:Llang)에 대응한다.[2]
다발을 통한 정의
매끄러운 다양체 위의 다발 제르브는 다음과 같은 데이터로 주어진다.[2]틀:Rp
이 데이터는 다음 조건을 만족시켜야 한다.
- (결합 법칙) . 여기서 는 (1,2,3) 또는 (2,3,4)번째 성분에 를 작용시킨 것이다.
접속
U(1) 주다발을 나타내는 0차 히친-채터지 제르브 위의 주접속은 다음과 같은 데이터로 주어진다.
이들은 다음 호환 조건을 만족시켜야 한다.
이 경우, 를 이어붙여 를 정의할 수 있으며, 는 U(1) 주다발의 천 특성류와 같다.
마찬가지로, 1차 히친-채터지 제르브 위의 접속은 다음과 같은 데이터로 주어진다.
이들은 다음 호환 조건을 만족시켜야 한다.[1]틀:Rp
이 경우, 들을 이어붙여
를 정의할 수 있으며, 또한 그 코호몰로지류 가 정수 계수인 것을 보일 수 있다.
보다 일반적으로, 차 히친-채터지 제르브의 경우, 각 위에는 차 히친-채터지 제르브의 접속이 주어져 있다. 차 히친-채터지 제르브의 접속 구조는 전이 함수 의 자연 로그 이다.
예
0-제르브
매끄러운 다양체 위의 0-다발 제르브는 단순히 U(1) 주다발이다. 이 경우 2차 정수 코호몰로지와의 대응 사상은 1차 천 특성류에 의해 주어진다.
−1-제르브
(−1)-다발 제르브는 함수 들의 호모토피류 이다.[2]틀:Rp 은 이산군 의 분류 공간이므로, 이는 주다발과 대응한다.
즉, 구체적으로 이는 각 열린 덮개 에 대하여, 임의의 두 에 대하여 “전이 함수”인 정수
에 의하여 명시되며, 이는
을 만족시켜야 한다.
또한, 을 잡으면
- 의 열린 덮개
- 전이 함수
- (공사슬 조건) 임의의 및 에 대하여,
즉, 만약 일 경우 이 된다. 이에 따라,
매끄러운 다양체 위:
−2-제르브
리 군 위의 제르브
콤팩트 연결 단일 연결 단순 리 군 위에는 자연스러운 1-제르브가 정의되어 있다.[3] 이 경우 항상 이고, 이 대응 사상을 디미에-두아디 사상(틀:Llang)이라고 한다. 이러한 리 군 는 디스미에-두아디 사상이 1인 코호몰로지류 에 대응하는 다발 제르브를 갖춘다. 3차 코호몰로지류로서, 이는 그 리 대수 의 구조 상수(structure constant)
의 드람 코호몰로지에 의하여 주어진다. 이러한 1-제르브는 베스-추미노-위튼 모형을 다룰 때 등장하며, 끈 이론의 캘브-라몽 장에 해당한다.[4]
3차원 초구 위의 제르브
구를 남반구와 북반구에 해당하는 열린 덮개로 덮으면, 적도 근방의 겹침 부분에 정의되는 전이 함수
를 통해 구 위의 U(1) 주다발을 정의할 수 있다. 이러한 전이 함수는 정수인 감음수로 분류되며, 이 정수는 U(1) 주다발의 (1차) 천 특성류(의 적분)에 해당한다 ().
마찬가지로, 3차원 초구를 북반구와 남반구에 해당하는 열린 덮개로 덮으면, 적도 근방의 겹침 부분 위에 정의되는 전이 U(1) 주다발
을 통해 3차원 초구 위의 다발 제르브를 정의할 수 있다. 이러한 전이 U(1) 주다발은 천 특성류의 적분인 정수로 분류되며, 이 정수는 다발 제르브의 디스미에-두아티 코호몰로지류에 해당한다 ().[2]틀:Rp
응용
제르브는 미분형식 전기역학을 다룰 때 등장한다. 1차 미분형식 전기역학인 양-밀스 이론(맥스웰 방정식)을 다룰 때 주다발을 사용하는 것처럼, 고차 미분형식 전기역학을 다룰 때는 제르브를 사용하게 된다. 즉, 게이지장은 제르브의 접속을 이루고, 게이지 장세기는 제르브 접속의 곡률이다.
특히, 끈 이론에서 등장하는 캘브-라몽 장은 제르브로 나타내어진다.[5]
역사
제르브의 일반적인 개념은 알렉산더 그로텐디크의 아이디어들을 발전시켜 장 지로(틀:Llang, 1936~2007)가 도입하였다.[6] 지로가 지은 이름 "틀:Llang"는 짚단을 뜻한다. 이후 장뤼크 브릴린스키(틀:Llang, 1951~)가 제르브를 더 기하학적인 기법으로 정의하였다.[7] 다발 제르브는 마이클 머리(틀:Llang)가 도입하였다.[8]