킬링 형식
틀:위키데이터 속성 추적 리 군 이론에서, 킬링 형식(Killing形式, 틀:Llang)은 리 대수 위에 자연스럽게 존재하는 대칭 쌍선형 형식이다.[1][2] 리 대수의 딸림표현의 곱의 대각합이다.
정의
추상적 정의
가환환 위의 리 대수 가 주어졌다고 하고, 또한 가 유한 차원 -자유 가군이라고 하자. 이제, 의 딸림표현
를 생각하자. 그렇다면, 의 킬링 형식
는 다음과 같은 대칭 쌍선형 형식이다.
리 초대수의 경우
보다 일반적으로, 체 위의 리 초대수 가 주어졌다고 하고, 또한 가 유한 차원 -초벡터 공간이라고 하자. 이제, 의 딸림표현
를 생각하자. 그렇다면, 의 킬링 형식
성분을 통한 정의
체 위의 유한 차원 리 대수 의 기저 를 잡고, 이에 대한 구조 상수가
라고 하자. 그렇다면, 의 킬링 형식은 다음과 같다.
성질
킬링 형식은 대각합의 순환성()에 의하여 대칭 쌍선형 형식을 이룬다.
킬링 형식은 다음과 같은 항등식을 만족시킨다.
리 초대수의 킬링 형식
체 위의 유한 차원 리 초대수 의 킬링 형식 는 다음과 같은 성질을 갖는다.[3]틀:Rp
단순 리 대수의 경우와 달리, 표수 0의 대수적으로 닫힌 체 위의 단순 리 초대수는 킬링 형식이 0일 수 있다. 표수 0의 대수적으로 닫힌 체 위의 단순 리 초대수 가운데, 킬링 형식이 0인 것은 다음과 같다.[3]틀:Rp
나머지 단순 리 초대수는 모두 0이 아닌 킬링 형식을 갖는다.
직합
체 위의 두 유한 차원 리 (초)대수 , 에 대하여, 그 직합 의 킬링 형식은 다음과 같다.
실수체 위의 리 대수
만약 가 단순 리 대수라면 위 항등식을 만족하는 모든 형식은 킬링 형식의 스칼라배이다.
리 대수가 반단순 리 대수인 필요 충분 조건은 그 킬링 형식이 비퇴화 쌍선형 형식인 것이다. 이를 카르탕 조건(Cartan條件, 틀:Llang)이라고 한다.
실수체 위의 콤팩트 리 대수의 킬링 형식은 항상 음의 정부호 쌍선형 형식이다.
예
아벨 리 대수
임의의 체 위의 유한 차원 아벨 리 대수 의 킬링 형식은 항상 0이다.
행렬 리 대수
임의의 체 및 자연수 에 대하여, 일반 선형 리 대수 의 킬링 형식은 다음과 같다.
또한, 특수 선형 리 대수 의 킬링 형식은 다음과 같다.
증명:
편의상, 의 기저 가 번째 성분만이 1이며, 나머지 성분이 모두 0인 행렬이라고 하자. 그렇다면,
이다. 이제, 야코비 항등식에 의하여,
이다. 따라서,
라고 놓으면,
가 된다. 따라서,
이다.
특수 선형 리 대수의 경우, 표준적인 분해
아래, 아벨 리 대수 의 킬링 형식이 0이므로, 이는 일반 선형 리 대수의 경우의 표현을 그대로 사용할 수 있다. (물론, 이 경우 둘째 항이 0이 된다.)
행렬 리 대수의 경우, 킬링 형식은 다음과 같다.
| 리 대수 | 설명 | 킬링 형식 |
|---|---|---|
| gl(n, ℂ) | n×n 복소수 행렬 | 2n tr(XY) − 2 tr(X)tr(Y) |
| sl(n, ℝ) | n×n 무대각합 복소수 행렬 | 2n tr(XY) |
| su(n) | n×n 반에르미트 행렬 | 2n tr(XY) |
| so(n, ℝ) | n×n 반대칭 실수 행렬 | (n−2) tr(XY) |
| so(n, ℂ) | n×n 반대칭 복소수 행렬 | (n−2) tr(XY) |
| sp(2n, ℝ) | 2n×2n 실수 해밀턴 행렬 | (2n+2) tr(XY) |
| sp(2n, ℂ) | 2n×2n 복소수 해밀턴 행렬 | (2n+2) tr(XY) |
리 대수의 계량과 이중 콕서터 수
단순 리 대수의 경우, 통상적으로 계량을 긴 근의 길이가 가 되게 규격화한다.[4]틀:Rp[5]틀:Rp 이 경우 짧은 근의 길이는 Bn, Cn, F4인 경우 1 또는 G2의 경우 이다. 이렇게 규격화할 경우, 계량 형식은 다음과 같다.[6]
| 리 대수 | 행렬 표현 | 규격화 계량 형식 |
|---|---|---|
| su(n) | n×n 반에르미트 행렬 | − tr(XY) |
| so(n, ℝ) | n×n 반대칭 행렬 | − ½tr(XY) |
| usp(2n) | 2n×2n 반에르미트 해밀턴 행렬 | − tr(XY) |
| n×n 사원수 반에르미트 행렬 | − tr(XY + YX) | |
| e6 | 27×27 반에르미트 행렬 | − (9/4) tr(XY) |
| e7 | 56×56 반대칭 행렬 | − (3/2) tr(XY) |
| e8 | 248×248 반대칭 행렬 | − (41/10) tr(XY) |
| f4 | 26×26 반대칭 행렬 | − (4/3) tr(XY) |
| g2 | 7×7 반대칭 행렬 | − (5/8) tr(XY) |
이렇게 계량 형식을 규격화하면, 3차원 초구로부터의 임의의 연속 함수 에 대하여 항상
이다.[6]
이렇게 규격화한 계량 형식을 로 놓으면,
이다.[7]틀:Rp[5]틀:Rp 여기서 는 단순 리 대수의 이중 콕서터 수(틀:Llang)이다. (이는 빅토르 카츠가 도입하였고, 해럴드 스콧 맥도널드 콕서터의 이름을 땄다.) 이는 다음 표와 같다.
| 리 대수 | an | bn | cn | dn | e6 | e7 | e8 | f4 | g2 |
|---|---|---|---|---|---|---|---|---|---|
| 다른 이름 | SU(n+1) | SO(2n+1) | USp(2n) | SO(2n) | — | ||||
| 이중 콕서터 수 | n+1 | 2n−1 | n+1 | 2n−2 | 12 | 18 | 30 | 9 | 4 |
역사
엘리 카르탕이 1894년에 도입하였다.[8] 독일 수학자 빌헬름 킬링의 이름을 땄다.