기본 표현

testwiki
둘러보기로 이동 검색으로 이동

틀:위키데이터 속성 추적 리 군표현론에서 기본 표현(基本表現, 틀:Lang)은 그 우세 무게가 다른 모든 우세 무게들의 집합의 기저를 이루는 표현이다. 주어진 군의 임의의 표현은 기본 표현들의 조합으로 유일하게 나타낼 수 있다.

성질

모든 표현은 일련의 무게들로 나타낼 수 있다. 계수(틀:Lang, 카르탕 부분 대수의 차원)가 k반단순 리 대수의 표현은 k개의 무게를 가진다. 즉, 무게들은 k차원 실수 벡터 공간의 원소다. 여기에 임의로 정분면(틀:Lang)을 골라, 순서를 매길 수 있다. 그 가운데, 선택한 양근에 의하여 결정되는 단순 쌍대근의 쌍대 기저를 기본 무게(基本-, 틀:Lang)고 한다. 기본 무게를 우세 무게로 가지는 표현을 기본 표현이라고 한다. 이에 따라 임의의 표현은 기본 표현들의 텐서곱의 최고 무게 성분으로 나타낼 수 있다. 기본 표현은 무게 공간의 기저를 이루므로, 기본 표현의 개수는 리 군의 계수와 같다.

단순 리 군의 기본 표현

  • An = SU(n+1) (또는 그 복소화인 SL(n+1,))의 경우, 기본 표현은 k차 완전 반대칭 텐서 kn+1 (k=1,,n)이다. 이 경우, 기본 무게는 (1,0,0,,0), (1,1,0,,0) …, (1,1,1,,1)의 꼴이다.
  • Bn = Spin(2n+1)의 경우, 기본 표현은 2n차원 디랙 스피너k2n+1 (k=1,,n1)이다. 이 경우, 기본 무게는 (1/2,1/2,,1/2) (스피너)와 (1,0,,0,0), …, (1,1,,1,0)이다. (물론 (1,1,,1)=2(1/2,1/2,,1/2)이므로 기본 표현이 아니다.)
  • Cn = USp(2n)의 경우, 기본 표현은 k2n (k=1,,n)의 최고 무게 기약 성분이다. 이는 (2nk)(2nk2) (k2)차원이다. 물론 k=1인 경우는 그냥 2n차원이다.
  • Dn = Spin(2n)의 경우, 기본 표현은 2n1차원 바일 스피너 두 개와 k2n (k=1,,n2)이다. 이 경우, 기본 무게는 (1/2,1/2,,1/2,±1/2)(1,0,,0,0.0), …, (1,1,,1,0,0)이다.
  • F4의 경우, 기본 표현은 26, 52, 273, 1274차원 표현이다. 여기서 52차원 표현은 딸림표현이다.
  • G2의 경우, 기본 표현은 7차원 표현과 14차원 표현이다. 여기서 14차원 표현은 딸림표현이다.
  • E6의 경우, 기본 표현은 27, 27′, 78, 351, 351′, 2925차원 표현이다. 여기서 78차원 표현은 딸림표현이다.
  • E7의 경우, 기본 표현은 56, 133, 912, 1539, 8645, 27664, 365750차원 표현이다. 여기서 133차원 표현은 딸림표현이다.
  • E8의 경우, 기본 표현은 각각 248, 3875, 30380, 147250, 2450240, 6696000, 146325270, 6899079264차원 표현이다. 여기서 248차원 표현은 딸림표현이다.

같이 보기

틀:전거 통제