제한근
둘러보기로 이동
검색으로 이동
틀:위키데이터 속성 추적 리 군론에서 제한근(制限根, 틀:Llang)은 리 대수에서, 극대 부분 콤팩트 리 대수의 직교 여공간에 대한 고윳값들의 벡터이다.[1]
정의
다음이 주어졌다고 하자.
그렇다면, 쌍대 공간 의 원소
에 대하여, 다음을 정의할 수 있다.
물론
이다.
만약 이며 이라면, 를 의 제한근이라고 하며, 를 그 제한근 공간(틀:Llang)이라고 한다. 의 제한근들의 집합을 로 표기하자.
성질
실수 반단순 리 대수 의 제한근은 다음 조건들을 만족시킨다.
즉, 실수 반단순 리 대수 는 그 제한근 공간들의 합으로 분해된다. 또한, 이 분해의 각 성분들은 킬링 형식에 대하여 서로 직교이다.
다음이 성립한다.
이와사와 분해
틀:본문 에서, 임의로 양근의 개념
을 정의하자. 이제
를 정의하면,
은 의 이와사와 분해이다.