월먼 콤팩트화
둘러보기로 이동
검색으로 이동
틀:위키데이터 속성 추적 일반위상수학에서 월먼 콤팩트화(틀:Llang)는 임의의 T1 공간을 콤팩트 T1 공간으로 확장하는 방법이다. 대략, 유한 교집합 성질을 만족시키는 닫힌집합들의 집합족의 교집합이 공집합인 경우, 새로운 점을 이 교집합의 원소로 추가해 준다.
정의
T1 공간 의 월먼 콤팩트화 는 집합으로서 의 닫힌집합들의 부분 순서 집합 의 극대 필터들의 집합이다. 이 위의 위상은 다음과 같은 기저를 통해 주어진다.
는 위상수학적 매장이다. 이 함수의 상 은 의 조밀 집합이다. 또한, 임의의 콤팩트 하우스도르프 공간 및 연속 함수 에 대하여, 인 연속 함수 가 존재한다.
성질
T1 공간 에 대하여, 다음 두 조건이 서로 동치이다.
이에 따라, 정규 T1 공간의 월먼 콤팩트화는 스톤-체흐 콤팩트화와 일치한다.