루진의 정리
둘러보기로 이동
검색으로 이동
틀:위키데이터 속성 추적 해석학에서 루진의 정리(Лузин의定理, 틀:Llang)는 가측 함수가 거의 어디서나 연속 함수라는 정리이다.
정의
라돈 측도 를 갖춘 하우스도르프 공간 에서 (보렐 시그마 대수를 갖춘) 제2 가산 공간 로 가는 가측 함수
에 대하여, 만약 라면, 루진의 정리에 따르면 임의의 양의 실수 에 대하여 다음 두 조건들을 만족시키는 닫힌 집합 가 존재한다.
- 는 연속 함수이다.
만약 가 추가로 국소 콤팩트 공간이라면, 임의의 양의 실수 에 대하여 다음 두 조건들을 만족시키는 콤팩트 집합 및 연속 함수 가 존재한다.
- 이다.
실수 구간의 경우, 다음과 같은 형태의 루진 정리가 성립한다. 임의의 함수 에 대하여, 다음 두 조건이 서로 동치이다.
역사
참고 문헌
- 김성기, 계승혁, 《실해석》, 서울대학교출판부, 2002.