정규 부분군
둘러보기로 이동
검색으로 이동
틀:위키데이터 속성 추적 군론에서 정규 부분군(正規部分群, 틀:Llang)은 내부자기동형사상에 대해 불변인 부분군을 말한다. 정규 부분군에 대하여 몫군을 취할 수 있다.
정의
군 의 부분군 에 대하여, 다음 조건들이 서로 동치이며, 이를 만족시키는 부분군을 의 정규 부분군이라고 한다.
- 임의의 에 대하여,
- 임의의 에 대하여, . 즉, 내부자기동형사상에 대하여 불변이다.
- 임의의 에 대하여, . 즉, 좌잉여류와 우잉여류가 일치한다.
- 인 군 준동형 가 존재한다.
- 정규화 부분군이 전체이다. 즉, 이다.
- 정규핵이 자기 자신이다. 즉, 이다.
이 의 정규 부분군임을 다음과 같이 표기한다.
성질
군 의 부분군 이 정규 부분군이 될 충분 조건은 다음이 있다.
틀:증명 임을 보이는 것으로 족하다. 가 의 최소 소인수라고 하자. 은 군의 작용
은 대칭군 의 부분군과 동형이며, 그 크기는 대칭군의 크기 의 약수이다. 즉, 몫군
의 크기는 의 약수이다. 그러나 위 몫군의 크기는 미만의 소인수를 가질 수 없다. 따라서 크기는 1이다. 틀:증명 끝
군 의 정규 부분군 가 주어졌다면, 몫군 에서 의 외부자기동형군 로 가는 자연스러운 군 준동형이 존재한다.
이는 다음과 같은 가환 그림에 의하여 정의된다. 여기서 길이가 5인 행 및 열은 짧은 완전열이다.
여기서 준동형 은 이며, 은 이다.
특히, 이 아벨 정규 부분군일 경우, 이 자명군이며 이므로, 다음과 같은 자연스러운 군 준동형을 얻는다.
예
유클리드 군 은 평행 이동의 군 을 정규 부분군으로 갖는다. 반면, 회전군 은 부분군이지만 정규 부분군이 아니다.
역사
정규 부분군의 중요성을 처음으로 인식한 사람은 에바리스트 갈루아였다.