여과 범주
둘러보기로 이동
검색으로 이동
틀:위키데이터 속성 추적 범주론에서, 여과 범주(濾過範疇, 틀:Llang)는 상향 원순서 집합의 개념의 범주론적 일반화이다. 여과 범주를 정의역으로 하는 쌍대 극한은 유한 극한과 가환한다.
정의
정칙 기수 가 주어졌다고 하자. 범주 가 다음 조건들을 만족시킨다면, -여과 범주라고 한다.
-여과 범주는 단순히 여과 범주라고 한다.
마찬가지로, -쌍대 여과 범주(틀:Llang)는 -여과 범주의 반대 범주이다.
성질
- -여과 범주이다.
- 다음 세 조건들을 만족시킨다.
- 하나 이상의 대상을 갖는다. (이는 가 아무 대상을 갖지 않을 때의 경우이다.)
- (두 대상의 상계의 존재) 임의의 두 대상 에 대하여, 대상 및 두 사상 이 존재한다.
- (두 사상의 상계의 존재) 같은 정의역과 공역을 갖는 두 사상 에 대하여, 가 되는 대상 및 사상 가 존재한다.
극한의 교환 법칙
임의의 완비 범주 및 임의의 작은 범주 에 대하여 극한 함자
를 정의할 수 있으며, 임의의 쌍대 완비 범주 및 임의의 작은 범주 에 대하여 쌍대 극한 함자
를 정의할 수 있다. 특히, 작은 범주의 범주는 데카르트 닫힌 범주이므로, 두 개의 작은 범주 , 및 함자
에 대하여, 함자
및 집합
를 정의할 수 있다. 또한, 극한 또는 쌍대 극한의 보편 성질에 의하여 표준적인 함수
가 존재한다.