제약된 극값 정리

testwiki
둘러보기로 이동 검색으로 이동

틀:위키데이터 속성 추적 제약된 극값 정리(制約된 極값 定理, 틀:Llang)는 선형대수학정리로, 이차 형식최댓값최솟값단위구 상에서 구할 때의 조건에 관한 내용이다.[1]

공식화

A를 실수 성분만을 갖는 n×n인 대칭행렬이라 하고, 그 크기의 내림차순으로 배열된 고윳값λ1,λ2,...,λn 라 하자. 그러면, 제약된 극값 정리는 다음 세 명제가 성립하는 것으로 표현할 수 있다.[1]

  1. 단위구 ||x|| = 1 위에 xTAx의 최댓값과 최솟값이 존재한다.
  2. 최댓값은 가장 큰 고윳값인 λ1 이고, 이 최댓값은 xλ1 에 대응하는 A의 단위 고유벡터일 때 존재한다.
  3. 최솟값은 가장 작은 고윳값인 λn 이고, 이 최솟값은 xλn 에 대응하는 A의 단위 고유벡터일 때 존재한다.

여기서 조건인 ||x|| = 1를 제약(constraint)이라 하고, 이 제약에서 xTAx의 최댓값 또는 최솟값을 제약된 극값(constrained extremum)이라 한다.[1]

같이 보기

각주

틀:각주

참고 문헌

  • Howard Anton, Robert C. Busby, 고형준 외 공역, 《최신선형대수》, 학술정보, 2004
  1. 1.0 1.1 1.2 Howard Anton, Robert C. Busby, 고형준 외 공역, 《최신선형대수》, 학술정보, 2004, 684쪽.