전곡률

곡선의 미분 기하학에서 몰입된 평면 곡선의 전곡률은 호 길이 매개화 곡선을 따른 곡률의 적분이다.
닫힌 곡선의 전곡률은 항상 2틀:Pi의 정수 N배이다. 여기서 N은 곡선의 지표 또는 회전수라고 한다. 이는 원점에 대한 단위 접벡터의 감김 수 또는 동등하게 곡선의 각 점에 할당된 단위원에 해당 점의 단위 속도 벡터를 지정하는 사상의 브라우어 차수이다. 이 사상은 곡면에 대한 가우스 사상과 비슷하다.
곡면과의 비교
국소적인 기하 불변량인 곡률과 전역적인 위상 불변량인 지표 사이의 이러한 관계는 가우스-보네 정리 와 같은 고차원 리만 기하학 결과의 특징이다.
불변성
휘트니-그라우슈타인 정리에 따르면 전곡률은 곡선의 정규 호모토피 하에서 불변이다. 이는 가우스 사상의 차수이다. 그러나 호모토피 하에서는 불변이 아닙니다. 꼬임(뾰족한 끝)을 통과하면 회전 수가 1씩 변경된다.
이에 반해, 점 주위의 감김 수는 그 점을 통과하지 않는 호모토피에서는 불변이고, 점을 통과하면 1씩 변한다.
일반화

유한한 일반화는 삼각형 또는 보다 일반적으로 단순 다각형의 외부 각도를 더하면 360°=2틀:Pi가 된다는 것이다. 이는 회전수 1에 해당한다.
곡선의 절대 전곡률은 전곡률과 거의 같은 방식으로 정의되지만 부호 있는 곡률 대신 곡률의 절대값을 사용한다. 평면의 볼록한 곡선의 경우 2틀:Pi이고 볼록하지 않은 곡선의 경우 더 크다.[1] 또한 틀:수학 변수에 전개 가능한 접선을 평면으로 편평화하고 결과 곡선의 전곡률을 계산하여 더 높은 차원 공간의 곡선으로 일반화할 수 있다. 즉, 틀:수학 변수차원 공간에서 곡선의 전곡률은 다음과 같다.
여기서 틀:수학은 마지막 프레네 곡률(곡선의 비틀림)이고 틀:수학은 부호 함수이다.
주어진 매듭을 나타내는 3차원 곡선의 최소 절대 전곡률은 매듭 불변량이다. 이 불변량은 매듭지어지지 않은 매듭의 경우 2틀:Pi이지만 페리-밀너 정리에 따르면 매듭의 경우 최소 4틀:Pi이다.[2]