야코비 기호
둘러보기로 이동
검색으로 이동
틀:위키데이터 속성 추적 수론에서 야코비 기호(Jacobi symbol)는 르장드르 기호를 소수뿐만이 아니라 모든 양의 홀수 범위로 확장한 함수이다.
임의의 홀수 이 의 꼴로 소인수 분해될 때,
로 정의된다. 여기에서 가 소수일 때의 는 르장드르 기호를 가리킨다.
크로네커 기호는 야코비 기호를 홀수 범위에서 모든 정수 범위로 확장한 기호이다.
성질
아래의 네 성질은 르장드르 기호에서의 성질과 동일하다.
- 이면
- m, n이 홀수일 때 (이차 상호 법칙)
역사
카를 구스타프 야코프 야코비가 1837년에 제시하였다.
값 표
| 틀:Diagonal split header | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 틀:01 | 1 | 1 | 틀:01 | 1 | 1 | 1 | 1 | 틀:01 | 1 | 1 | 1 | 1 | 1 | 1 | 틀:01 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 틀:01 | 1 | 1 | 1 | 1 | 1 |
| 3 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 |
| 5 | 1 | −1 | −1 | 1 | 0 | 1 | −1 | −1 | 1 | 0 | 1 | −1 | −1 | 1 | 0 | 1 | −1 | −1 | 1 | 0 | 1 | −1 | −1 | 1 | 0 | 1 | −1 | −1 | 1 | 0 |
| 7 | 1 | 1 | −1 | 1 | −1 | −1 | 0 | 1 | 1 | −1 | 1 | −1 | −1 | 0 | 1 | 1 | −1 | 1 | −1 | −1 | 0 | 1 | 1 | −1 | 1 | −1 | −1 | 0 | 1 | 1 |
| 9 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
| 11 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 0 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 0 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | −1 |
| 13 | 1 | −1 | 1 | 1 | −1 | −1 | −1 | −1 | 1 | 1 | −1 | 1 | 0 | 1 | −1 | 1 | 1 | −1 | −1 | −1 | −1 | 1 | 1 | −1 | 1 | 0 | 1 | −1 | 1 | 1 |
| 15 | 1 | 1 | 0 | 1 | 0 | 0 | −1 | 1 | 0 | 0 | −1 | 0 | −1 | −1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | −1 | 1 | 0 | 0 | −1 | 0 | −1 | −1 | 0 |
| 17 | 1 | 1 | −1 | 1 | −1 | −1 | −1 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 1 | 1 | 0 | 1 | 1 | −1 | 1 | −1 | −1 | −1 | 1 | 1 | −1 | −1 | −1 | 1 |
| 19 | 1 | −1 | −1 | 1 | 1 | 1 | 1 | −1 | 1 | −1 | 1 | −1 | −1 | −1 | −1 | 1 | 1 | −1 | 0 | 1 | −1 | −1 | 1 | 1 | 1 | 1 | −1 | 1 | −1 | 1 |
| 21 | 1 | −1 | 0 | 1 | 1 | 0 | 0 | −1 | 0 | −1 | −1 | 0 | −1 | 0 | 0 | 1 | 1 | 0 | −1 | 1 | 0 | 1 | −1 | 0 | 1 | 1 | 0 | 0 | −1 | 0 |
| 23 | 1 | 1 | 1 | 1 | −1 | 1 | −1 | 1 | 1 | −1 | −1 | 1 | 1 | −1 | −1 | 1 | −1 | 1 | −1 | −1 | −1 | −1 | 0 | 1 | 1 | 1 | 1 | −1 | 1 | −1 |
| 25 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
| 27 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 |
| 29 | 1 | −1 | −1 | 1 | 1 | 1 | 1 | −1 | 1 | −1 | −1 | −1 | 1 | −1 | −1 | 1 | −1 | −1 | −1 | 1 | −1 | 1 | 1 | 1 | 1 | −1 | −1 | 1 | 0 | 1 |
| 31 | 1 | 1 | −1 | 1 | 1 | −1 | 1 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | −1 | 1 | −1 | −1 | 1 | −1 | −1 |
| 33 | 1 | 1 | 0 | 1 | −1 | 0 | −1 | 1 | 0 | −1 | 0 | 0 | −1 | −1 | 0 | 1 | 1 | 0 | −1 | −1 | 0 | 0 | −1 | 0 | 1 | −1 | 0 | −1 | 1 | 0 |
| 35 | 1 | −1 | 1 | 1 | 0 | −1 | 0 | −1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | −1 | −1 | 0 | 0 | −1 | −1 | −1 | 0 | −1 | 1 | 0 | 1 | 0 |
| 37 | 1 | −1 | 1 | 1 | −1 | −1 | 1 | −1 | 1 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | −1 | −1 | −1 | 1 | −1 | −1 | −1 | 1 | 1 | 1 | 1 | −1 | 1 |
| 39 | 1 | 1 | 0 | 1 | 1 | 0 | −1 | 1 | 0 | 1 | 1 | 0 | 0 | −1 | 0 | 1 | −1 | 0 | −1 | 1 | 0 | 1 | −1 | 0 | 1 | 0 | 0 | −1 | −1 | 0 |
| 41 | 1 | 1 | −1 | 1 | 1 | −1 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | −1 | −1 | 1 | −1 | 1 | −1 | 1 | 1 | −1 | 1 | −1 | 1 | −1 | −1 | −1 | −1 | −1 |
| 43 | 1 | −1 | −1 | 1 | −1 | 1 | −1 | −1 | 1 | 1 | 1 | −1 | 1 | 1 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | −1 | −1 |
| 45 | 1 | −1 | 0 | 1 | 0 | 0 | −1 | −1 | 0 | 0 | 1 | 0 | −1 | 1 | 0 | 1 | −1 | 0 | 1 | 0 | 0 | −1 | −1 | 0 | 0 | 1 | 0 | −1 | 1 | 0 |
| 47 | 1 | 1 | 1 | 1 | −1 | 1 | 1 | 1 | 1 | −1 | −1 | 1 | −1 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | 1 | −1 | −1 | 1 | 1 | −1 | 1 | 1 | −1 | −1 |
| 49 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
| 51 | 1 | −1 | 0 | 1 | 1 | 0 | −1 | −1 | 0 | −1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | −1 | 1 | 0 | 1 | −1 | 0 | −1 | 1 | 0 |
| 53 | 1 | −1 | −1 | 1 | −1 | 1 | 1 | −1 | 1 | 1 | 1 | −1 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | −1 | −1 | −1 | 1 | 1 | −1 | −1 | 1 | 1 | −1 |
| 55 | 1 | 1 | −1 | 1 | 0 | −1 | 1 | 1 | 1 | 0 | 0 | −1 | 1 | 1 | 0 | 1 | 1 | 1 | −1 | 0 | −1 | 0 | −1 | −1 | 0 | 1 | −1 | 1 | −1 | 0 |
| 57 | 1 | 1 | 0 | 1 | −1 | 0 | 1 | 1 | 0 | −1 | −1 | 0 | −1 | 1 | 0 | 1 | −1 | 0 | 0 | −1 | 0 | −1 | −1 | 0 | 1 | −1 | 0 | 1 | 1 | 0 |
| 59 | 1 | −1 | 1 | 1 | 1 | −1 | 1 | −1 | 1 | −1 | −1 | 1 | −1 | −1 | 1 | 1 | 1 | −1 | 1 | 1 | 1 | 1 | −1 | −1 | 1 | 1 | 1 | 1 | 1 | −1 |
참고 문헌
외부 링크
- Calculate Jacobi symbol 틀:웹아카이브 shows the steps of the calculation.