야코비 기호

testwiki
둘러보기로 이동 검색으로 이동

틀:위키데이터 속성 추적 수론에서 야코비 기호(Jacobi symbol)는 르장드르 기호소수뿐만이 아니라 모든 양의 홀수 범위로 확장한 함수이다.

임의의 홀수 nn=p1α1p2α2pkαk의 꼴로 소인수 분해될 때,

(an)=(ap1)α1(ap2)α2(apk)αk

로 정의된다. 여기에서 p가 소수일 때의 (ap)르장드르 기호를 가리킨다.

크로네커 기호는 야코비 기호를 홀수 범위에서 모든 정수 범위로 확장한 기호이다.

성질

아래의 네 성질은 르장드르 기호에서의 성질과 동일하다.

  1. (abn)=(an)(bn)
  2. ab(modn)이면 (an)=(bn)
  3. (1n)=(1)n12={1 if n1(mod4)1 if n3(mod4)
  4. m, n이 홀수일 때 (mn)=(nm)(1)m12n12 (이차 상호 법칙)

역사

카를 구스타프 야코프 야코비가 1837년에 제시하였다.

값 표

틀:Diagonal split header 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1 틀:01 1 1 틀:01 1 1 1 1 틀:01 1 1 1 1 1 1 틀:01 1 1 1 1 1 1 1 1 틀:01 1 1 1 1 1
3 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0
5 1 −1 −1 1 0 1 −1 −1 1 0 1 −1 −1 1 0 1 −1 −1 1 0 1 −1 −1 1 0 1 −1 −1 1 0
7 1 1 −1 1 −1 −1 0 1 1 −1 1 −1 −1 0 1 1 −1 1 −1 −1 0 1 1 −1 1 −1 −1 0 1 1
9 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0
11 1 −1 1 1 1 −1 −1 −1 1 −1 0 1 −1 1 1 1 −1 −1 −1 1 −1 0 1 −1 1 1 1 −1 −1 −1
13 1 −1 1 1 −1 −1 −1 −1 1 1 −1 1 0 1 −1 1 1 −1 −1 −1 −1 1 1 −1 1 0 1 −1 1 1
15 1 1 0 1 0 0 −1 1 0 0 −1 0 −1 −1 0 1 1 0 1 0 0 −1 1 0 0 −1 0 −1 −1 0
17 1 1 −1 1 −1 −1 −1 1 1 −1 −1 −1 1 −1 1 1 0 1 1 −1 1 −1 −1 −1 1 1 −1 −1 −1 1
19 1 −1 −1 1 1 1 1 −1 1 −1 1 −1 −1 −1 −1 1 1 −1 0 1 −1 −1 1 1 1 1 −1 1 −1 1
21 1 −1 0 1 1 0 0 −1 0 −1 −1 0 −1 0 0 1 1 0 −1 1 0 1 −1 0 1 1 0 0 −1 0
23 1 1 1 1 −1 1 −1 1 1 −1 −1 1 1 −1 −1 1 −1 1 −1 −1 −1 −1 0 1 1 1 1 −1 1 −1
25 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0
27 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1 −1 0
29 1 −1 −1 1 1 1 1 −1 1 −1 −1 −1 1 −1 −1 1 −1 −1 −1 1 −1 1 1 1 1 −1 −1 1 0 1
31 1 1 −1 1 1 −1 1 1 1 1 −1 −1 −1 1 −1 1 −1 1 1 1 −1 −1 −1 −1 1 −1 −1 1 −1 −1
33 1 1 0 1 −1 0 −1 1 0 −1 0 0 −1 −1 0 1 1 0 −1 −1 0 0 −1 0 1 −1 0 −1 1 0
35 1 −1 1 1 0 −1 0 −1 1 0 1 1 1 0 0 1 1 −1 −1 0 0 −1 −1 −1 0 −1 1 0 1 0
37 1 −1 1 1 −1 −1 1 −1 1 1 1 1 −1 −1 −1 1 −1 −1 −1 −1 1 −1 −1 −1 1 1 1 1 −1 1
39 1 1 0 1 1 0 −1 1 0 1 1 0 0 −1 0 1 −1 0 −1 1 0 1 −1 0 1 0 0 −1 −1 0
41 1 1 −1 1 1 −1 −1 1 1 1 −1 −1 −1 −1 −1 1 −1 1 −1 1 1 −1 1 −1 1 −1 −1 −1 −1 −1
43 1 −1 −1 1 −1 1 −1 −1 1 1 1 −1 1 1 1 1 1 −1 −1 −1 1 −1 1 1 1 −1 −1 −1 −1 −1
45 1 −1 0 1 0 0 −1 −1 0 0 1 0 −1 1 0 1 −1 0 1 0 0 −1 −1 0 0 1 0 −1 1 0
47 1 1 1 1 −1 1 1 1 1 −1 −1 1 −1 1 −1 1 1 1 −1 −1 1 −1 −1 1 1 −1 1 1 −1 −1
49 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1
51 1 −1 0 1 1 0 −1 −1 0 −1 1 0 1 1 0 1 0 0 1 1 0 −1 1 0 1 −1 0 −1 1 0
53 1 −1 −1 1 −1 1 1 −1 1 1 1 −1 1 −1 1 1 1 −1 −1 −1 −1 −1 −1 1 1 −1 −1 1 1 −1
55 1 1 −1 1 0 −1 1 1 1 0 0 −1 1 1 0 1 1 1 −1 0 −1 0 −1 −1 0 1 −1 1 −1 0
57 1 1 0 1 −1 0 1 1 0 −1 −1 0 −1 1 0 1 −1 0 0 −1 0 −1 −1 0 1 −1 0 1 1 0
59 1 −1 1 1 1 −1 1 −1 1 −1 −1 1 −1 −1 1 1 1 −1 1 1 1 1 −1 −1 1 1 1 1 1 −1

참고 문헌

외부 링크