틀:위키데이터 속성 추적
아래 목록은 쌍곡선 함수의 부정적분이다.
아래의 적분식들에서 상수 a는 0이 아니며, C는 적분상수이다.
∫sinhaxdx=1acoshax+C
∫sinh2axdx=14asinh2ax−x2+C
∫sinhnaxdx=1an(sinhn−1ax)(coshax)−n−1n∫sinhn−2axdx(for n>0)
∫dxsinhax=1aln|tanhax2|+C
∫dxsinhnax=−coshaxa(n−1)sinhn−1ax−n−2n−1∫dxsinhn−2ax(for n≠1)
∫xsinhaxdx=1axcoshax−1a2sinhax+C
∫(sinhax)(sinhbx)dx=1a2−b2(a(sinhbx)(coshax)−b(coshbx)(sinhax))+C(for a2≠b2)
∫coshaxdx=1asinhax+C
∫cosh2axdx=14asinh2ax+x2+C
∫coshnaxdx=1an(sinhax)(coshn−1ax)+n−1n∫coshn−2axdx(for n>0)
∫dxcoshax=2aarctaneax+C
∫dxcoshnax=sinhaxa(n−1)coshn−1ax+n−2n−1∫dxcoshn−2ax(for n≠1)
∫xcoshaxdx=1axsinhax−1a2coshax+C
∫x2coshaxdx=−2xcoshaxa2+(x2a+2a3)sinhax+C
∫(coshax)(coshbx)dx=1a2−b2(a(sinhax)(coshbx)−b(sinhbx)(coshax))+C(for a2≠b2)
∫dx1+cosh(ax)=2a11+e−ax+C
이는 로지스틱 함수의 2a배이다.
∫tanhxdx=lncoshx+C
∫tanh2axdx=x−tanhaxa+C
∫tanhnaxdx=−1a(n−1)tanhn−1ax+∫tanhn−2axdx(for n≠1)
∫cothxdx=ln|sinhx|+C, for x≠0
∫cothnaxdx=−1a(n−1)cothn−1ax+∫cothn−2axdx(for n≠1)
∫sechxdx=arctan(sinhx)+C
∫cschxdx=ln|tanhx2|+C=ln|cothx−cschx|+C, for x≠0
∫(coshax)(sinhbx)dx=1a2−b2(a(sinhax)(sinhbx)−b(coshax)(coshbx))+C(for a2≠b2)
∫coshnaxsinhmaxdx=coshn−1axa(n−m)sinhm−1ax+n−1n−m∫coshn−2axsinhmaxdx(for m≠n)
∫sinh(ax+b)sin(cx+d)dx=aa2+c2cosh(ax+b)sin(cx+d)−ca2+c2sinh(ax+b)cos(cx+d)+C
∫sinh(ax+b)cos(cx+d)dx=aa2+c2cosh(ax+b)cos(cx+d)+ca2+c2sinh(ax+b)sin(cx+d)+C
∫cosh(ax+b)sin(cx+d)dx=aa2+c2sinh(ax+b)sin(cx+d)−ca2+c2cosh(ax+b)cos(cx+d)+C
∫cosh(ax+b)cos(cx+d)dx=aa2+c2sinh(ax+b)cos(cx+d)+ca2+c2cosh(ax+b)sin(cx+d)+C