헤론 공식(Heron's formula)은 삼각형의 세 변의 길이를 통해 넓이를 구하는 공식이다. 직선으로 둘러싸인 도형은 아무리 복잡한 형태를 하고 있다고 해도 반드시 삼각형으로 쪼갤 수 있다. 또, 이 공식을 사용하면 높이를 따로 구할 필요가 없기 때문에, 토지의 면적을 구하는 데 편리한 공식으로써도 알려져 있다.
그리고 오른쪽 삼각형처럼 B를 원점으로 하고 한변을 X축에 놓게 좌표평면에 그릴 수 있다. 이 때 점 C는 (Z,0) 점 A는 (X,Y)라 가정할 수 있다. 먼저 라고 할 수 있다.
이때
=x
= x
==
삼각형 ABC의 넓이는 밑변인 BC 와 높이를 가지고 구할 수 있다.
증명들 중에서는 일부 창의적인 방식을 통해 증명해 나가는 경우가 있다. 보조선을 사용하는 것이 그 예이다. 이때 좌표평면을 사용하면 어려운 증명이라도 계산만 복잡할 뿐 많은 것을 증명할 수 가 있다. 이제 한번 좌표평면으로 헤론의 공식을 증명해보아 별다른 방식 없이도 가능하다는 것을 보일 수 있었다.
일반화
헤론의 공식은 원에 내접하는 사각형의 넓이를 구하는 브라마굽타 공식의 특별한 경우로 생각할 수 있다.