The field
The field is a superposition of several 2D gaussian surfaces.
Define
G
(
x
,
y
)
=
e
−
(
x
2
+
y
2
)
{\displaystyle {\mbox{G}}(x,y)=e^{-(x^{2}+y^{2})}}
Then, the field f used is given by the following function:
f
(
x
,
y
)
=
−
4
10
S
(
x
,
y
)
+
3
2
{\displaystyle f(x,y)=-{\tfrac {4}{10}}S(x,y)+{\tfrac {3}{2}}}
Where S is the sum of the following:
S
(
x
,
y
)
=
G
(
2
x
,
2
y
)
−
8
10
G
(
2
x
+
1.25
,
2
y
+
1.25
)
+
1
2
G
(
2
x
−
1.25
,
4
y
+
1.25
)
−
1
2
G
(
3
x
−
1.25
,
3
y
−
1.25
)
+
7
20
G
(
2
x
+
1.25
,
2
y
−
1.25
)
−
1
2
G
(
x
−
1.25
,
3
y
+
1.5
)
+
6
5
G
(
x
+
1.25
,
3
y
−
1.85
)
{\displaystyle S(x,y)={\begin{aligned}\\{\mbox{G}}(2x,2y)\\-{\tfrac {8}{10}}{\mbox{G}}(2x+1.25,2y+1.25)\\+{\tfrac {1}{2}}{\mbox{G}}(2x-1.25,4y+1.25)\\-{\tfrac {1}{2}}{\mbox{G}}(3x-1.25,3y-1.25)\\+{\tfrac {7}{20}}{\mbox{G}}(2x+1.25,2y-1.25)\\-{\tfrac {1}{2}}{\mbox{G}}(x-1.25,3y+1.5)\\+{\tfrac {6}{5}}{\mbox{G}}(x+1.25,3y-1.85)\end{aligned}}}
Evaluated from -1 to 1 in both x and y directions.
3D version
3D version 한국어 이 파일이 나타내는 바에 대한 한 줄 설명을 추가합니다