세메레디의 정리

testwiki
imported>A.TedBot님의 2022년 2월 11일 (금) 18:37 판 (봇: 위키데이터 속성 추적 틀 부착 (근거 1, 근거 2))
(차이) ← 이전 판 | 최신판 (차이) | 다음 판 → (차이)
둘러보기로 이동 검색으로 이동

틀:위키데이터 속성 추적 세메레디의 정리(Szemerédi's theorem)는 정수의 밀도와 등차수열의 발생의 관계에 관한 조합론적 정수론 정리이다. 이 정리는 다음과 같은 두 가지 형태가 있다.

무한형태: A가 자연수집합 의 부분집합이고 이 집합의 밀도가 0보다 크면, 즉 lim supn#(A{1,,n})/n>0 이면 A는 임의로 긴 길이의 등차수열을 포함한다.

유한형태: 임의의 0 < d < 1 와 임의의 자연수 k에 대해서 그에 해당하는 자연수 N(d,k)가 존재하여 다음의 성질을 만족한다: {1, ..., n}의 부분집합 A의 원소의 개수가 dN이상이고 n > N(d,k)이면 A는 길이가 k인 등차수열을 포함한다.

물론 무한형태와 유한형태가 동치임을 쉽게 보일 수 있다.

역사

1936년 에르되시 팔투란 팔이 가설을 세웠고, 세메레디 엔드레1975년에 복잡한 조합론적 방법을 이용해 증명에 성공하였다. 힐렐 퓌르스텐베르크1977년에 세메레디의 정리를 에르고딕 이론의 문제로 치환하는 놀라운 발상에 착안해 색다른 증명을 만들었다.

틀:토막글