틀:반정다면체 정보 문서 원본 보기
←
틀:반정다면체 정보
둘러보기로 이동
검색으로 이동
문서 편집 권한이 없습니다. 다음 이유를 확인해주세요:
요청한 명령은 다음 권한을 가진 사용자에게 제한됩니다:
사용자
.
문서의 원본을 보거나 복사할 수 있습니다.
{{{{{1}}}|{{{2}}}| |tT-name=깎은 정사면체| |tT-image=Truncated tetrahedron.png| |tT-image2=Truncatedtetrahedron.jpg| |tT-image3=Truncatedtetrahedron.gif| |tT-dimage=Triakistetrahedron.jpg| |tT-vfigimage=Truncated tetrahedron vertfig.png|tT-netimage=Truncated tetrahedron flat.svg| |tT-vfig=3.6.6| |tT-conway=tT| |tT-Wythoff=2 3 | 3| |tT-W=6|tT-U=02|tT-K=07|tT-C=16| |tT-V=12|tT-E=18|tT-F=8|tT-Fdetail=4{3}+4{6}| |tT-chi=2 |tT-group=[[정사면체 대칭|T<sub>d</sub>]], A<sub>3</sub>, [3,3], (*332), 24차| |tT-rotgroup=[[정사면체 대칭|T]], [3,3]<sup>+</sup>, (332), 12차| |tT-B=Tut|tT-special=|tT-schl=t{3,3} = h<sub>2</sub>{4,3}|tT-schl2=t<sub>0,1</sub>{3,3} |tT-dual=삼방사면체| |tT-dihedral=3-6: 109°28′16′<BR>6-6: 70°31′44″| |tT-CD={{CDD|node_1|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node_1}} |tO-name=깎은 정팔면체| |tO-image=Truncated octahedron.png| |tO-image2=Truncatedoctahedron.jpg| |tO-image3=Truncatedoctahedron.gif| |tO-dimage=Tetrakishexahedron.jpg| |tO-vfigimage=Truncated octahedron vertfig.png|tO-netimage=Truncated Octahedron Net.svg| |tO-vfig=4.6.6| |tO-conway=tO<BR>bT| |tO-Wythoff=2 4 | 3<BR>3 3 2 || |tO-W=7|tO-U=08|tO-K=13|tO-C=20| |tO-V=24|tO-E=36|tO-F=14|tO-Fdetail=6{4}+8{6}| |tO-chi=2 |tO-group=[[정팔면체 대칭|O<sub>h</sub>]], B<sub>3</sub>, [4,3], (*432), 48차<BR>[[정사면체 대칭|T<sub>h</sub>]], [3,3] and (*332), 24차| |tO-rotgroup=[[정팔면체 대칭|O]], [4,3]<sup>+</sup>, (432), 24차| |tO-B=Toe| |tO-special=[[parallelohedron]]<BR>[[permutohedron]]| |tO-schl=t{3,4}<BR>tr{3,3}또는 <math>t\begin{Bmatrix} 3 \\ 3 \end{Bmatrix}</math>|tO-schl2=t<sub>0,1</sub>{3,4}또는 t<sub>0,1,2</sub>{3,3}| |tO-dual=사방육면체| |tO-dihedral=4-6: arccos(−{{sfrac|1|{{sqrt|3}}}}) = 125°15′51″<BR>6-6: arccos(−{{Sfrac|1|3}}) = 109°28′16″| |tO-CD={{CDD|node|4|node_1|3|node_1}}<BR>{{CDD|node_1|3|node_1|3|node_1}} |tC-name=깎은 정육면체| |tC-image=Truncated hexahedron.png| |tC-image2=Truncatedhexahedron.jpg| |tC-image3=Truncatedhexahedron.gif| |tC-dimage=Triakisoctahedron.jpg| |tC-vfigimage=Truncated cube vertfig.svg|tC-netimage=Truncated hexahedron flat.svg| |tC-vfig=3.8.8| |tC-conway=tC| |tC-Wythoff=2 3 | 4| |tC-W=8|tC-U=09|tC-K=14|tC-C=21| |tC-V=24|tC-E=36|tC-F=14|tC-Fdetail=8{3}+6{8}| |tC-chi=2 |tC-group=[[정팔면체 대칭|O<sub>h</sub>]], B<sub>3</sub>, [4,3], (*432), 48차| |tC-rotgroup=[[정팔면체 대칭|O]], [4,3]<sup>+</sup>, (432), 24차| |tC-B=Tic| |tC-dual=삼방팔면체|tC-schl=t{4,3}|tC-schl2=t<sub>0,1</sub>{4,3}| |tC-dihedral=3-8: 125°15′51″<BR>8-8: 90°| |tC-special=| |tC-CD={{CDD|node_1|4|node_1|3|node}} |tI-name=깎은 정이십면체| |tI-image=Truncated icosahedron.png| |tI-image2=Truncatedicosahedron.jpg| |tI-image3=Truncatedicosahedron.gif| |tI-dimage=Pentakisdodecahedron.jpg| |tI-vfigimage=Truncated icosahedron vertfig.png|tI-netimage=Truncated icosahedron flat-2.svg| |tI-vfig=5.6.6| |tI-conway=tI| |tI-Wythoff=2 5 | 3| |tI-W=9|tI-U=25|tI-K=30|tI-C=27| |tI-V=60|tI-E=90|tI-F=32|tI-Fdetail=12{5}+20{6}| |tI-chi=2 |tI-group=[[정이십면체 대칭|I<sub>h</sub>]], H<sub>3</sub>, [5,3], (*532), 120차| |tI-rotgroup=[[정이십면체 대칭|I]], [5,3]<sup>+</sup>, (532), 60차| |tI-B=Ti| |tI-dual=오방십이면체|tI-schl=t{3,5}|tI-schl2=t<sub>0,1</sub>{3,5}| |tI-dihedral=6-6: 138.189685°<BR>6-5: 142.62° |tI-special=| |tI-CD={{CDD|node|5|node_1|3|node_1}} |tD-name=깎은 정십이면체| |tD-image=Truncated dodecahedron.png| |tD-image2=Truncateddodecahedron.jpg| |tD-image3=Truncateddodecahedron.gif| |tD-dimage=Triakisicosahedron.jpg| |tD-vfigimage=Truncated dodecahedron vertfig.png|tD-netimage=Truncated dodecahedron flat.png| |tD-vfig=3.10.10| |tD-conway=tD| |tD-Wythoff=2 3 | 5| |tD-W=10|tD-U=26|tD-K=31|tD-C=29| |tD-V=60|tD-E=90|tD-F=32|tD-Fdetail=20{3}+12{10}| |tD-chi=2 |tD-group=[[정이십면체 대칭|I<sub>h</sub>]], H<sub>3</sub>, [5,3], (*532), 120차| |tD-rotgroup=[[정이십면체 대칭|I]], [5,3]<sup>+</sup>, (532), 60차| |tD-B=Tid| |tD-dual=삼방이십면체|tD-schl=t{5,3}|tD-schl2=t<sub>0,1</sub>{5,3}| |tD-dihedral=10-10: 116.57°<BR>3-10: 142.62°| |tD-special=| |tD-CD={{CDD|node_1|5|node_1|3|node}} |CO-name=육팔면체| |CO-image=Cuboctahedron.png| |CO-image2=Cuboctahedron.jpg| |CO-image3=Cuboctahedron.gif| |CO-dimage=Rhombicdodecahedron.jpg| |CO-vfigimage=Cuboctahedron_vertfig.png|CO-netimage=Cuboctahedron flat.svg| |CO-vfig=3.4.3.4| |CO-conway=aC<BR>aaT| |CO-Wythoff=2 | 3 4<BR>3 3 | 2| |CO-W=11|CO-U=07|CO-K=12|CO-C=19| |CO-V=12|CO-E=24|CO-F=14|CO-Fdetail=8{3}+6{4}| |CO-chi=2 |CO-group=[[정팔면체 대칭|O<sub>h</sub>]], B<sub>3</sub>, [4,3], (*432), 48차<BR>[[정사면체 대칭|T<sub>d</sub>]], [3,3], (*332), 24차| |CO-rotgroup=[[정팔면체 대칭|O]], [4,3]<sup>+</sup>, (432), 24차| |CO-B=Co|CO-special=[[준정다면체]]| |CO-dual=마름모십이면체|CO-schl=r{4,3}또는 <math>\begin{Bmatrix} 4 \\ 3 \end{Bmatrix}</math><BR>rr{3,3}또는 <math>r\begin{Bmatrix} 3 \\ 3 \end{Bmatrix}</math>|CO-schl2=t<sub>1</sub>{4,3}또는 t<sub>0,2</sub>{3,3} |CO-dihedral=125.26°<BR>arcsec(−{{sqrt|3}})| |CO-CD={{CDD|node|4|node_1|3|node}}또는 {{CDD||node_1|split1-43|nodes}}<BR>{{CDD|node_1|3|node|3|node_1}}또는 {{CDD||node|split1|nodes_11}} |ID-name=십이이십면체| |ID-image=Icosidodecahedron.png| |ID-image2=Icosidodecahedron.jpg| |ID-image3=Icosidodecahedron.gif| |ID-dimage=Rhombictriacontahedron.svg| |ID-vfigimage=Icosidodecahedron_vertfig.png|ID-netimage=Icosidodecahedron flat.svg| |ID-vfig=3.5.3.5| |ID-conway=aD| |ID-Wythoff=2 | 3 5| |ID-W=12|ID-U=24|ID-K=29|ID-C=28| |ID-V=30|ID-E=60|ID-F=32|ID-Fdetail=20{3}+12{5}| |ID-chi=2 |ID-group=[[정이십면체 대칭|I<sub>h</sub>]], H<sub>3</sub>, [5,3], (*532), 120차| |ID-rotgroup=[[정이십면체 대칭|I]], [5,3]<sup>+</sup>, (532), 60차| |ID-B=Id||ID-special=[[준정다면체]]| |ID-dual=마름모삼십면체|ID-schl=r{5,3}|ID-schl2=t<sub>1</sub>{5,3}| |ID-dihedral=142.62°<BR><math> \cos^{-1} \left(-\sqrt{\frac{1}{15}\left(5+2\sqrt{5}\right)}\right)</math>| |ID-CD={{CDD|node|5|node_1|3|node}} |grCO-name=깎은 육팔면체| |grCO-image=Great rhombicuboctahedron.png| |grCO-image2=Truncatedcuboctahedron.jpg| |grCO-image3=Truncatedcuboctahedron.gif| |grCO-dimage=Disdyakisdodecahedron.jpg| |grCO-vfigimage=Great rhombicuboctahedron vertfig.png|grCO-netimage=Truncated cuboctahedron flat.svg| |grCO-vfig=4.6.8| |grCO-conway=bC또는 taC| |grCO-altname1=마름모 깎은 육팔면체| |grCO-Wythoff=2 3 4 | | |grCO-W=15|grCO-U=11|grCO-K=16|grCO-C=23| |grCO-V=48|grCO-E=72|grCO-F=26|grCO-Fdetail=12{4}+8{6}+6{8}| |grCO-chi=2 |grCO-group=[[정팔면체 대칭|O<sub>h</sub>]], B<sub>3</sub>, [4,3], (*432), 48차| |grCO-rotgroup=[[정팔면체 대칭|O]], [4,3]<sup>+</sup>, (432), 24차| |grCO-B=Girco|grCO-special=[[zonohedron]]|grCO-schl=tr{4,3}또는 <math>t\begin{Bmatrix} 4 \\ 3 \end{Bmatrix}</math>|grCO-schl2=t<sub>0,1,2</sub>{4,3}| |grCO-dual=육방팔면체| |grCO-dihedral=4-6: arccos(−{{sfrac|{{sqrt|6}}|3}}) = 144°44′08″<BR>4-8: arccos(−{{sfrac|{{sqrt|2}}|3}}) = 135°<BR>6-8: arccos(−{{sfrac|{{sqrt|3}}|3}}) = 125°15′51″| |grCO-CD={{CDD|node_1|4|node_1|3|node_1}} |grID-name=깎은 십이이십면체| |grID-image=Great rhombicosidodecahedron.png| |grID-image2=Truncatedicosidodecahedron.jpg| |grID-image3=Truncatedicosidodecahedron.gif| |grID-dimage=Disdyakistriacontahedron.jpg| |grID-vfigimage=Great rhombicosidodecahedron vertfig.png|grID-netimage=Truncated icosidodecahedron flat.svg| |grID-vfig=4.6.10| |grID-conway=bD또는 taD| |grID-altname1=마름모 깎은 십이이십면체| |grID-Wythoff=2 3 5 | | |grID-W=16|grID-U=28|grID-K=33|grID-C=31| |grID-V=120|grID-E=180|grID-F=62|grID-Fdetail=30{4}+20{6}+12{10}| |grID-chi=2 |grID-group=[[정이십면체 대칭|I<sub>h</sub>]], H<sub>3</sub>, [5,3], (*532), 120차| |grID-rotgroup=[[정이십면체 대칭|I]], [5,3]<sup>+</sup>, (532), 60차| |grID-B=Grid|grID-special=[[zonohedron]]||grID-schl=tr{5,3}또는 <math>t\begin{Bmatrix} 5 \\ 3 \end{Bmatrix}</math>|grID-schl2=t<sub>0,1,2</sub>{5,3}| |grID-dual=육방이십면체| |grID-dihedral=6-10: 142.62°<BR>4-10: 148.28°<BR>4-6: 159.095°| |grID-CD={{CDD|node_1|5|node_1|3|node_1}} |lrCO-name=마름모육팔면체| |lrCO-image=Small rhombicuboctahedron.png| |lrCO-image2=Rhombicuboctahedron.jpg| |lrCO-image3=Rhombicuboctahedron.gif| |lrCO-dimage=Deltoidalicositetrahedron.jpg| |lrCO-vfigimage=Small rhombicuboctahedron vertfig.png|lrCO-netimage=Rhombicuboctahedron flat.png| |lrCO-vfig=3.4.4.4| |lrCO-conway=eC또는 aaC<BR>aaaT| |lrCO-Wythoff=3 4 | 2| |lrCO-W=13|lrCO-U=10|lrCO-K=15|lrCO-C=22| |lrCO-V=24|lrCO-E=48|lrCO-F=26|lrCO-Fdetail=8{3}+(6+12){4}|lrCO-chi=2| |lrCO-group=[[정팔면체 대칭|O<sub>h</sub>]], B<sub>3</sub>, [4,3], (*432), 48차| |lrCO-rotgroup=[[정팔면체 대칭|O]], [4,3]<sup>+</sup>, (432), 24차| |lrCO-B=Sirco| |lrCO-dual=연꼴이십사면체| |lrCO-dihedral=3-4: 144°44′08″ (144.74°)<BR>4-4: 135°| |lrCO-special=|lrCO-schl=rr{4,3}또는 <math>r\begin{Bmatrix} 4 \\ 3 \end{Bmatrix}</math>|lrCO-schl2=t<sub>0,2</sub>{4,3}| |lrCO-CD={{CDD|node_1|4|node|3|node_1}} |lrID-name=마름모십이이십면체| |lrID-image=Small rhombicosidodecahedron.png| |lrID-image2=Rhombicosidodecahedron.jpg| |lrID-image3=Rhombicosidodecahedron.gif| |lrID-dimage=Deltoidalhexecontahedron.jpg| |lrID-netimage=Rhombicosidodecahedron flat.png| |lrID-vfig=3.4.5.4| |lrID-conway=eD또는 aaD| |lrID-vfigimage=Small rhombicosidodecahedron vertfig.png| |lrID-Wythoff=3 5 | 2| |lrID-W=14|lrID-U=27|lrID-K=32|lrID-C=30| |lrID-V=60|lrID-E=120|lrID-F=62|lrID-Fdetail=20{3}+30{4}+12{5}| |lrID-chi=2 |lrID-group=[[정이십면체 대칭|I<sub>h</sub>]], H<sub>3</sub>, [5,3], (*532), 120차| |lrID-rotgroup=[[정이십면체 대칭|I]], [5,3]<sup>+</sup>, (532), 60차| |lrID-B=Srid| |lrID-dual=연꼴육십면체| |lrID-dihedral=3-4: 159°05′41″ (159.09°)<BR>4-5: 148°16′57″ (148.28°)| |lrID-special=|lrID-schl=rr{5,3}또는 <math>r\begin{Bmatrix} 5 \\ 3 \end{Bmatrix}</math>|lrID-schl2=t<sub>0,2</sub>{5,3}| |lrID-CD={{CDD|node_1|5|node|3|node_1}} |nCO-name=다듬은 정육면체| |nCO-image=Snub hexahedron.png| |nCO-image2=Snubhexahedroncw.jpg| |nCO-image3=Snubhexahedroncw.gif| |nCO-dimage=Pentagonalicositetrahedronccw.jpg| |nCO-vfigimage=Snub cube vertfig.png|nCO-netimage=Snub cube flat.svg| |nCO-vfig=3.3.3.3.4| |nCO-conway=sC| |nCO-Wythoff=| 2 3 4| |nCO-W=17|nCO-U=12|nCO-K=17|nCO-C=24| |nCO-V=24|nCO-E=60|nCO-F=38| |nCO-Fdetail=(8+24){3}+6{4}| |nCO-chi=2 |nCO-group=[[정팔면체 대칭|O]], {{sfrac|1|2}}B<sub>3</sub>, [4,3]<sup>+</sup>, (432), 24차| |nCO-rotgroup=[[정팔면체 대칭|O]], [4,3]<sup>+</sup>, (432), 24차| |nCO-B=Snic| |nCO-dual=오각이십사면체| |nCO-dihedral=3-3: 153°14′04″ (153.23°)<BR>3-4: 142°59′00″ (142.98°)| |nCO-special=[[카이랄성 (수학)|카이랄]]|nCO-schl=sr{4,3}또는 <math>s\begin{Bmatrix} 4 \\ 3 \end{Bmatrix}</math>|nCO-schl2=ht<sub>0,1,2</sub>{4,3}| |nCO-CD={{CDD|node_h|4|node_h|3|node_h}} |nID-name=다듬은 정십이면체| |nID-image=Snub dodecahedron ccw.png| |nID-image2=Snubdodecahedronccw.jpg| |nID-image3=Snubdodecahedronccw.gif| |nID-dimage=Pentagonalhexecontahedronccw.jpg| |nID-vfigimage=Snub dodecahedron vertfig.png|nID-netimage=Snub dodecahedron flat.svg| |nID-vfig=3.3.3.3.5| |nID-conway=sD| |nID-Wythoff=| 2 3 5| |nID-W=18|nID-U=29|nID-K=34|nID-C=32| |nID-V=60|nID-E=150|nID-F=92| |nID-Fdetail=(20+60){3}+12{5}| |nID-chi=2 |nID-group=[[정이십면체 대칭|I]], {{sfrac|1|2}}H<sub>3</sub>, [5,3]<sup>+</sup>, (532), 60차| |nID-rotgroup=[[정이십면체 대칭|I]], [5,3]<sup>+</sup>, (532), 60차| |nID-B=Snid|nID-special=[[카이랄성 (수학)|카이랄]]|nID-schl=sr{5,3}또는 <math>s\begin{Bmatrix} 5 \\ 3 \end{Bmatrix}</math>|nID-schl2=ht<sub>0,1,2</sub>{5,3}| |nID-dual=오각육십면체| |nID-dihedral=3-3: 164°10′31″ (164.18°)<BR>3-5: 152°55′53″ (152.93°)| |nID-CD={{CDD|node_h|5|node_h|3|node_h}} }}<noinclude> {{설명문서|내용= {{다면체 틀}} [[분류:다면체 틀]] }} </noinclude>
이 문서에서 사용한 틀:
틀:CDD
(
원본 보기
)
틀:Sfrac
(
원본 보기
)
틀:Sqrt
(
원본 보기
)
틀:설명문서
(
원본 보기
)
틀:반정다면체 정보
문서로 돌아갑니다.
둘러보기 메뉴
개인 도구
로그인
이름공간
틀
토론
한국어
보기
읽기
원본 보기
역사 보기
더 보기
검색
둘러보기
대문
최근 바뀜
임의의 문서로
미디어위키 도움말
특수 문서 목록
도구
여기를 가리키는 문서
가리키는 글의 최근 바뀜
문서 정보