복소수 문서 원본 보기
←
복소수
둘러보기로 이동
검색으로 이동
문서 편집 권한이 없습니다. 다음 이유를 확인해주세요:
요청한 명령은 다음 권한을 가진 사용자에게 제한됩니다:
사용자
.
문서의 원본을 보거나 복사할 수 있습니다.
{{위키데이터 속성 추적}} {{출처 필요|날짜=2012-12-26}} [[수학]]에서 '''복소수'''(複素數, {{llang|en|complex number}})는 <math>a+bi</math> (<math>a,b</math>는 [[실수]]) 꼴의 수이다. 여기서 <math>i</math>는 [[허수 단위]]라고 불리는 수이며, <math>i^2=-1</math>을 만족시킨다. <math>a</math>는 '''실수부'''(real part), <math>b</math>는 '''허수부'''(imaginary part)라고 한다. 전자•전기를 다루는 계통에서는 전류 기호와의 혼동을 피하기 위해 대신 기호 <math>j</math>를 쓰기도 한다. 복소수의 집합은 [[체 (수학)|체]]를 이루며, [[대수학의 기본 정리]]가 성립한다. 그러나 실수와 달리 표준적인 [[전순서]]를 줄 수 없다. [[기하학]]적 관점에서, 복소수의 공간은 2차원 [[복소평면]]과 같으며, 이는 실수 공간을 나타내는 1차원 [[실수선]]을 확장하여 얻을 수 있다. [[추상대수학]]적 관점에서, 복소수의 집합은 유일한 2차원 [[노름]] [[나눗셈 대수]]이다. 복소수 집합의 기호는 <math>\mathbb C</math> 또는 <math>\mathbf C</math>이다. == 정의 == '''복소수체'''(複素數體, {{llang|en|field of complex numbers}}) <math>\mathbb C</math>는 <math>\mathbb R</math>-대수 <math>\mathbb R</math>의 [[케일리-딕슨 대수]] <math>\operatorname{CD}(\mathbb R)</math>(에서 [[체 (수학)|체]]의 구조만을 기억하여 얻는 체)이다. 구체적으로, 복소수체 <math>\mathbb C</math>는 집합으로서 <math>\mathbb R^2</math>이다. 그 위에는 표준적인 <math>\mathbb R</math>-[[벡터 공간]] 구조가 존재하며, 그 덧셈은 다음과 같다. :<math>(a,b)+(c,d)=(a+c,b+d)\qquad a,b,c,d\in\mathbb R</math> 여기에 <math>\mathbb R</math>-[[대수 (환론)|대수]] 구조를 다음과 같이 추가할 수 있다. :<math>(a,b)\cdot(c,d)=(ac-bd,ad+bc)\qquad a,b,c,d\in\mathbb R</math> 그렇다면, 이는 [[나눗셈 대수]]를 이루며, 여기서 [[체 (수학)|체]]를 제외한 구조를 잊으면 복소수체를 얻는다. 또한, 실수 단위 <math>(1,0)=1</math>과 [[허수 단위]] <math>(0,1)=i</math>를 정의하면, 이는 <math>i^2=-1</math>를 만족시키며, 모든 원소는 <math>(a,b)=a+bi</math>로 쓸 수 있다. [[실수체]]는 <math>a\mapsto a+0i</math>를 통해 자연스럽게 복소수체의 [[부분 집합]] <math>\mathbb R\subseteq\mathbb C</math>이라고 생각할 수 있다. 복소수체는 또한 다음과 같이 여러 가지로 정의할 수 있으며, 이들은 서로 [[동형]]이다. === 선형대수학적 정의 === 복소수체 <math>\mathbb C</math>는 [[행렬 대수]] <math>\operatorname{Mat}(2;\mathbb R)</math>의 다음과 같은 부분 대수와 동형이다. :<math>\left\{\begin{pmatrix}a&b\\-b&a\end{pmatrix}\colon a,b\in\mathbb R\right\}\subset\operatorname{Mat}(2;\mathbb R) </math> 이 경우, 실수 단위와 허수 단위는 각각 다음과 같다. :<math>1=\begin{pmatrix}1&0\\0&1\end{pmatrix}</math> :<math>i=\begin{pmatrix}0&1\\-1&0\end{pmatrix}</math> === 가환대수학적 정의 === 복소수체 <math>\mathbb C</math>는 실수체 <math>\mathbb R</math>의, [[이차 형식]] <math>Q\colon x\mapsto -x^2</math>에 대한 [[클리퍼드 대수]] <math>\operatorname{Cliff}(\mathbb R,Q;\mathbb R)</math>와 동형이다. 구체적으로, 복소수체 <math>\mathbb C</math>는 다음과 같은 [[몫환]]과 동형이다. :<math>\mathbb R[x]/(x^2+1)=\{a+bx+(x^2+1)\colon a,b,\in\mathbb R\}</math> 이 경우, 실수 단위와 허수 단위는 각각 다음과 같다. :<math>1=1+(x^2+1)</math> :<math>i=x+(x^2+1)</math> === 체론적 정의 === 복소수체 <math>\mathbb C</math>는 [[실수체]] <math>\mathbb R</math>의 [[대수적 폐포]] <math>\bar\mathbb R</math>와 동형이다. 이 경우, 실수 단위는 자명하며, 허수 단위는 방정식 <math>x^2+1=0</math>의 두 근 가운데 아무런 하나를 취하면 된다. == 표기 == [[파일:Complex_number_illustration_modarg.svg|섬네일|복소수의 직교 형식과 극형식과 지수 형식을 복소평면에서 나타낸 것]] === 복소평면 === 복소수는 [[데카르트 좌표계]]나 [[극좌표계]]를 갖춘 2차원 [[유클리드 평면]]의 점(또는 벡터)과 일대일 대응한다. 이러한 평면을 '''[[복소평면]]'''이라고 한다. 복소평면의 점은 꼭대깃점을 제외한 '''[[리만 구]]'''의 점과 일대일 대응한다. 복소평면에 무한대점 하나를 추가하면, [[리만 구]]와 일대일 대응을 갖는 집합을 얻는데, 이를 '''[[확장된 복소수]]'''라고 한다. === 직교 형식 === 복소수 <math>z</math>의 '''직교 형식'''(直交形式, {{llang|en|cartesian form}})은 다음과 같다. :<math>z=x+iy\qquad x,y\in\mathbb R</math> 여기서 <math>x</math>를 실수부, <math>y</math>를 허수부라고 한다. 실수부와 허수부는 각각 복소수의 두 좌표축에 대한 사영과 같다. 복소수의 직교 형식은 복소수의 덧셈과 뺄셈에서 편리하게 쓰인다. === 극형식 === 복소수 <math>z</math>의 '''극형식'''(極形式, {{llang|en|polar form}})은 다음과 같다. :<math>z=r(\cos\theta+i\sin\theta)\qquad r\ge0,\;\theta\in\mathbb R</math> (단, <math>\cos\theta=\frac{x}{\sqrt{x^2+y^2}}</math>, <math>\sin\theta=\frac{y}{\sqrt{x^2+y^2}}</math>) 여기서 <math>r</math>를 [[절댓값]], <math>\theta</math>를 [[편각 (수학)|편각]]이라고 한다. 절댓값은 복소수와 원점 사이의 거리와 같으며, 편각은 복소수와 원점의 연결선과 <math>x</math>축의 사잇각과 같다. === 지수 형식 === [[오일러 공식]] :<math>e^{i\theta}=\cos\theta+i\sin\theta</math> 에 따라, 복소수 <math>z</math>의 '''지수 형식'''(指數形式, {{llang|en|exponential form}})을 얻을 수 있으며, 이는 다음과 같다. :<math>z=re^{i\theta}\qquad r\ge0,\;\theta\in\mathbb R</math> 복소수의 극형식과 지수 형식은 복소수의 곱셈과 나눗셈에서 편리하게 쓰인다. === 실수부 · 허수부 · 절댓값 · 편각 · 켤레 복소수 === [[파일:Complex conjugate picture.svg|오른쪽|섬네일|복소수 <math>z</math>와 그 켤레복소수 <math>\bar{z}</math>를 복소평면 상에 기하학적으로 표현함.]]복소수 <math>z</math>의 직교 형식과 극형식과 지수 형식이 다음과 같다고 하자. :<math>z=x+iy=r(\cos\theta+i\sin\theta)=re^{i\theta}\qquad x,y,r,\theta\in\mathbb R,\;r\ge0</math> 그렇다면, 복소수에 대한 다음과 같은 단항 연산들을 정의할 수 있다. * <math>z</math>의 '''실수부'''(實數部, {{llang|en|real part}})는 실수 단위 1에 붙는 계수이다. 즉, 다음과 같다. *: <math>\operatorname{Re}z=x=r\cos\theta\in\mathbb R</math> * <math>z</math>의 '''허수부'''(虛數部, {{llang|en|imaginary part}})는 허수 단위 <math>i</math>에 붙는 계수이다. 즉, 다음과 같다. *: <math>\operatorname{Im}z=y=r\sin\theta\in\mathbb R</math> * <math>z</math>의 '''[[절댓값]]'''은 원점까지의 거리이다. [[피타고라스 정리]]에 따라, 이는 다음과 같다. *: <math>|z|=\sqrt{x^2+y^2}=r\in[0,\infty)</math> * <math>z</math>의 '''[[편각 (수학)|편각]]'''은 가로축과의 사잇각이다. 즉, 다음과 같다. *: <math>\operatorname{arg}z=\operatorname{atan2}(y,x)=\theta\,\operatorname{mod}\,2\pi\in(-\pi,\pi]</math> * <math>z\ne0</math>의 '''[[켤레 복소수]]'''는 가로축에 의한 반사에서 얻는 복소수이다. 즉, 다음과 같다. *: <math>\bar z=x-iy=re^{-i\theta}\in\mathbb C\qquad z\ne0</math> 이러한 기호들을 사용하여 복소수의 세 가지 형식을 다시 쓰면 다음과 같다. :<math>z=\operatorname{Re}z+i\operatorname{Im}z=|z|(\cos\operatorname{arg}z+i\sin\operatorname{arg}z)=|z|e^{i\operatorname{arg}z}</math> == 연산 == === 동일성 === 두 복소수가 서로 같을 필요충분조건은 실수부와 허수부가 서로 같은 것이다. :<math>a+bi=c+di\iff a=c\land b=d\qquad a,b,c,d\in\mathbb R</math> === 덧셈과 뺄셈 === 두 복소수의 합은 다음과 같다. :<math>(a+bi)+(c+di)=(a+c)+(b+d)i</math> 두 복소수의 차는 다음과 같다. :<math>(a+bi)-(c+di)=(a-c)+(b-d)i</math> 특히, 복소수의 덧셈 역원은 다음과 같다. :<math>-(a+bi)=(-a)+(-b)i</math> 복소수의 덧셈은 [[교환 법칙]]과 [[결합 법칙]]을 만족시킨다. === 곱셈과 나눗셈 === 두 복소수의 곱셈은 다음과 같다. :<math>(a+bi)(c+di)=(ac-bd)+(ad+bc)i</math> 두 복소수의 나눗셈은 분모의 [[켤레 복소수]]를 분모와 분자에 각각 곱해 구한다. (나누는 수가 0이 아니어야 한다.) :<math>\frac{a+bi}{c+di}=\frac{ac+bd}{c^2+d^2}+\frac{-ad+bc}{c^2+d^2}i\qquad c+di\ne0</math> 특히, 0이 아닌 복소수의 곱셈 역원은 다음과 같다. :<math>\frac1{a+bi}=\frac a{a^2+b^2}-\frac b{a^2+b^2}i\qquad a+bi\ne0</math> 극형식으로 나타낸 복소수 :<math>z=r(\cos\theta+i\sin\theta)</math> :<math>w=s(\cos\varphi+i\sin\varphi)</math> 에 대하여 쓰면 다음과 같다. :<math>zw=rs(\cos(\theta+\varphi)+i\sin(\theta+\varphi))</math> :<math>\frac zw=\frac rs(\cos(\theta-\varphi)+i\sin(\theta-\varphi))\qquad w\ne0</math> :<math>\frac1z=\frac 1r(\cos\theta-i\sin\theta)\qquad z\ne0</math> 마찬가지로, 지수 형식으로 나타낸 복소수 :<math>z=re^{i\theta}</math> :<math>w=se^{i\varphi}</math> 에 대하여 쓰면 다음과 같다. :<math>zw=rse^{i(\theta+\varphi)}</math> :<math>\frac zw=\frac rse^{i(\theta-\varphi)}\qquad w\ne0</math> :<math>\frac 1z=\frac 1re^{-i\theta}\qquad z\ne0</math> 복소수의 곱셈은 [[교환 법칙]]과 [[결합 법칙]]을 만족시키며, 덧셈에 대한 [[분배 법칙]]을 만족시킨다. 이에 따라, 복소수의 집합은 [[체 (수학)|체]]를 이룬다. === 순서체의 실패 === 복소수체 위에는 [[순서체]]의 구조를 줄 수 없다. 즉, 다음을 만족시키는 [[전순서]] <math>\le\subseteq\mathbb C\times\mathbb C</math>가 존재하지 않는다. * 임의의 <math>z,w\in\mathbb C</math>에 대하여, <math>z,w>0</math>이라면, <math>z+w>0</math>이며 <math>zw>0</math>이다. {{proof}} [[귀류법]]을 사용하여, 복소수체가 순서체가 되게 하는 전순서 <math>\le\subseteq\mathbb C\times\mathbb C</math>가 존재한다고 하자. 그렇다면, :<math>0<i</math> 이거나 :<math>0<-i</math> 이다. 따라서, :<math>0<(\pm i)^2=-1</math> 이며, :<math>0<(-1)^2=1</math> 이며, :<math>0<-1+1=0</math> 이다. 이는 모순이다. {{end proof}} 물론, <math>\mathbb C</math> 위의 순서 관계는 얼마든지 존재한다. 예를 들어, 다음과 같다. * ([[사전식 순서]]: [[전순서]]) <math>z<w\iff \operatorname{Re}z<\operatorname{Re}w\lor (\operatorname{Re}z=\operatorname{Re}w\land \operatorname{Im}z<\operatorname{Im}w)\qquad z,w\in\mathbb C</math> * ([[직접곱]]: [[부분 순서]]) <math>z\le w\iff \operatorname{Re}z\le\operatorname{Re}w\land \operatorname{Im}z\le\operatorname{Im}w\qquad z,w\in\mathbb C</math> * (절댓값의 크기 비교: [[원전순서]]) <math>z\le w\iff|z|\le|w|\qquad z,w\in\mathbb C</math> === 실수부와 허수부 === 복소수의 실수부와 허수부는 다음과 같이 나타낼 수 있다. :<math>\operatorname{Re}z=|z|\cos\operatorname{arg}z=\frac{z+\bar z}2</math> :<math>\operatorname{Im}z=|z|\sin\operatorname{arg}z=\frac{z-\bar z}{2i}</math> 복소수의 실수부와 허수부에 대하여, 다음 성질들이 성립한다. * <math>\operatorname{Re}(z\pm w)=\operatorname{Re}z\pm\operatorname{Re}w</math> * <math>\operatorname{Im}(z\pm w)=\operatorname{Im}z\pm\operatorname{Im}w</math> * <math>\operatorname{Re}(zw)=\operatorname{Re}z\operatorname{Re}w-\operatorname{Im}z\operatorname{Im}w</math> * <math>\operatorname{Im}(zw)=\operatorname{Re}z\operatorname{Im}w+\operatorname{Im}z\operatorname{Re}w</math> === 절댓값과 편각 === 복소수의 [[절댓값]]은 다음과 같이 나타낼 수 있다. :<math>|z|=\sqrt{(\operatorname{Re}z)^2+(\operatorname{Im}z)^2}=\sqrt{z\bar z}</math> 복소수의 절댓값은 [[노름]]을 이룬다. 즉, 다음 성질들이 성립한다. * <math>|z|\ge0</math> * <math>|z|=0\iff z=0</math> * <math>|z+w|\le|z|+|w|</math> * <math>|z+w|=|z|+|w|\iff z\bar w\in[0,\infty)</math> * <math>|zw|=|z||w|</math> * <math>\left|\frac zw\right|=\frac{|z|}{|w|}</math> 복소수의 [[편각 (수학)|편각]]은 다음과 같이 나타낼 수 있다. :<math>\operatorname{arg}z=\operatorname{atan2}(\operatorname{Im}z,\operatorname{Re}z)=\frac1{2i}\ln\frac z\bar z</math> 복소수의 편각에 대하여, 다음 성질들이 성립한다. * <math>\operatorname{arg}(zw)\equiv\operatorname{arg}z+\operatorname{arg}w\pmod{2\pi}</math> * <math>\operatorname{arg}\frac zw\equiv\operatorname{arg}z-\operatorname{arg}w\pmod{2\pi}</math> === 켤레 복소수 === [[켤레 복소수]]는 다음과 같이 나타낼 수 있다. :<math>\bar z=\operatorname{Re}z-i\operatorname{Im}z=|z|e^{-i\operatorname{arg}z}</math> 켤레 복소수 <math>\bar{}\colon\mathbb C\to\mathbb C</math>는 [[대합 (수학)|대합]] [[노름]] [[대수 (환론)|대수]] [[자기 동형]]을 이룬다. 즉, 다음 성질들이 성립한다. * <math>\bar\bar z=z</math> * <math>|\bar z|=|z|</math> * <math>\overline{z+w}=\bar z+\bar w</math> * <math>\overline{z-w}=\bar z-\bar w</math> * <math>\overline{zw}=\bar z\bar w</math> * <math>\overline\frac zw=\frac\bar z\bar w</math> 그러나 켤레 복소수는 [[정칙 함수]]가 아니다. == 종류 == === 실수와 허수 === 복소수 <math>z</math>는 실수부가 0인지와 허수부가 0인지에 따라 다름과 같이 분류된다. * 만약 <math>\operatorname{Im}z=0</math>이라면, <math>z</math>를 '''[[실수]]'''라고 한다. * 만약 <math>\operatorname{Im}z\ne0</math>이라면, <math>z</math>를 '''[[허수]]'''라고 한다. ** 만약 <math>\operatorname{Im}z\ne0</math>이며 <math>\operatorname{Re}z=0</math>이라면, <math>z</math>를 '''[[순허수]]'''라고 한다. 사실, 복소수 <math>z</math>에 대하여, 다음 조건들이 서로 동치이다. * <math>z</math>는 실수이다. * <math>\operatorname{Im}z=0</math> * <math>z=0</math>이거나, <math>\operatorname{arg}z=0,\pi</math> * <math>z=\bar z</math> 또한, 다음 조건들이 서로 동치이다. * <math>z</math>는 순허수이다. * <math>\operatorname{Re}z=0\ne\operatorname{Im}z</math> * <math>\operatorname{arg}z=\pm\frac\pi2</math> * <math>z=-\bar z\ne0</math> 예를 들어, <math>-1,1/3,\sqrt[3]2,\pi</math>는 실수이며, <math>1+i,-2i,2+\sqrt3i</math>는 허수이며, 이들 가운데 <math>-2i</math>는 순허수이다. === 대수적 수와 초월수 === 복소수 <math>z</math>는 어떤 다항식의 근이 될 수 있는지에 따라 다음과 같이 분류된다. * 만약 <math>f(z)=0</math>인 복소수 계수 다항식 <math>f(x)\ne0</math>가 존재한다면, <math>z</math>를 '''[[대수적 수]]'''라고 한다. * 만약 <math>f(z)=0</math>인 복소수 계수 다항식 <math>f(x)\ne0</math>가 존재하지 않는다면, <math>z</math>를 '''[[초월수]]'''라고 한다. 예를 들어, <math>\sqrt[3]2,(1+i)/\sqrt2</math>는 대수적 수이며, <math>e,\pi</math>는 초월수이다. == 확장 == [[대수학의 기본 정리]]에 따르면, 복소수 계수 다항식의 근은 모두 복소수이다. 예를 들어, :<math>\pm\sqrt i=\pm\frac{1+i}\sqrt2</math> 는 여전히 복소수이다. 따라서, 복소수는 다항식의 가상의 근을 새로운 원소로서 첨가하는 방식으로는 더 이상 확장되지 않는다. 추상대수학의 용어를 사용하면, 복소수체는 [[대수적으로 닫힌 체]]이다. 하지만 복소수에 포함되지 않는 다른 수가 존재하지 않는다는 의미는 아니다. 수라는 것은 인간의 자유로운 상상력을 기반으로 얼마든지 만들 수 있기 때문이다. 예를 들어 <math> \sqrt{x} = -1</math> 을 만족하는 <math>x</math>는 복소수가 아니며, 이러한 수를 새로 정의할 수 있다.<ref>박부성, 〈[https://terms.naver.com/entry.naver?docId=3570410&cid=58944&categoryId=58970 수학산책 : 복소수와 제곱근]〉, 네이버 캐스트, 2010년 10월 11일</ref> [[초월 확대]]를 사용하면 얼마든지 복소수체를 더 큰 체로 확장할 수 있다. 또한, 복소수체를 [[사원수]]라는 더 큰 [[나눗셈 대수]]로 확장할 수 있다. 그러나, 3차원 이상의 <math>\mathbb R</math>-[[대수 (환론)|대수]]는 [[체 (수학)|체]]가 될 수 없다. == 역사 == 역사적으로 음수의 제곱근이 최초로 나타난 것은, 서기 [[1세기]] 그리스의 수학자이자 발명가인 [[알렉산드리아의 헤론]]이 [[피라미드]]의 절단에 대한 부피를 계산할 때이다. 좀 더 명확히 나타난 때는 [[타르탈리아]]나 [[제롤라모 카르다노]]와 같은 16세기 이탈리아 수학자들이 삼차와 사차 다항방정식의 근에 대한 공식을 발견할 때이다. 그 당시의 수학자들은 이 공식들에서 실수해만을 구하려고 하였지만 그 과정에서 음수의 제곱근이 다루어지는 과정이 필요함을 곧 알 수 있었다. 그 당시에는 음수에 대한 이해도 부족했으므로 복소수는 수로서 인정되지 못했다. 17세기에 [[르네 데카르트]]가 처음으로 "허수"라는 용어를 사용하였다. 18세기에 [[아브라암 드무아브르]]와 [[레온하르트 오일러]]의 복소수에 대한 업적이 있었다. 유명한 [[드무아브르의 공식]]에 드무아부르의 업적이 나타나 있다: :<math>(\cos \theta + i \sin \theta)^{n} = \cos n \theta + i \sin n \theta \,</math> 그리고 [[복소해석학]]에서의 [[오일러의 공식]]에서 오일러의 업적을 볼 수 있다: :<math>\cos \theta + i \sin \theta = e ^{i \theta} \,</math>. 복소수의 존재성에 대해서는 1799년 [[카스파르 베셀]]이 복소수를 기하적인 표현으로 나타냄으로써 비로소 완전히 받아들여졌다. 이것은 수년 후에 [[카를 프리드리히 가우스]]가 발견하여 널리 알려져서, 결국 복소수가 매우 중요한 수의 확장으로 받아 들여졌다. 그러나 복소수의 기하학적 표현에 대한 생각은 1685년 [[존 월리스]]의 <De Algebra tractatus>에도 나타났다. == 같이 보기 == * [[원운동]] * [[해석적 연속]] * [[복소기하학]] * [[아이젠슈타인 정수]] * [[기하적 대수학]] == 각주 == {{각주}} == 외부 링크 == {{위키공용분류}} * {{수학노트|title=복소수}} * {{eom|title=Complex number}} * {{매스월드|id=ComplexNumber|title=Complex number}} * {{nlab|id=complex number|title=Complex number}} * {{플래닛매스|urlname=ComplexNumber|title=Complex number}} * {{proofwiki|id=Definition:Complex Number|제목=Definition:Complex number}} * {{proofwiki|id=Complex Numbers cannot be Totally Ordered|제목=Complex numbers cannot be totally ordered}} {{수 체계}} {{전거 통제}} [[분류:복소수| ]] [[분류:대수]] [[분류:수 체계]] [[분류:합성 대수]]
이 문서에서 사용한 틀:
틀:End proof
(
원본 보기
)
틀:Eom
(
원본 보기
)
틀:Llang
(
원본 보기
)
틀:Nlab
(
원본 보기
)
틀:Proof
(
원본 보기
)
틀:Proofwiki
(
원본 보기
)
틀:각주
(
원본 보기
)
틀:매스월드
(
원본 보기
)
틀:수 체계
(
원본 보기
)
틀:수학노트
(
원본 보기
)
틀:위키공용분류
(
원본 보기
)
틀:위키데이터 속성 추적
(
원본 보기
)
틀:전거 통제
(
원본 보기
)
틀:출처 필요
(
원본 보기
)
틀:플래닛매스
(
원본 보기
)
복소수
문서로 돌아갑니다.
둘러보기 메뉴
개인 도구
로그인
이름공간
문서
토론
한국어
보기
읽기
원본 보기
역사 보기
더 보기
검색
둘러보기
대문
최근 바뀜
임의의 문서로
미디어위키 도움말
특수 문서 목록
도구
여기를 가리키는 문서
가리키는 글의 최근 바뀜
문서 정보