동류항 문서 원본 보기
←
동류항
둘러보기로 이동
검색으로 이동
문서 편집 권한이 없습니다. 다음 이유를 확인해주세요:
요청한 명령은 다음 권한을 가진 사용자에게 제한됩니다:
사용자
.
문서의 원본을 보거나 복사할 수 있습니다.
{{위키데이터 속성 추적}} [[대수학]]에서 '''동류항'''(同類項, {{lang|en|like terms, similar terms}})은 문자와 [[차 (수학)|차수]]가 각각 같은 항을 말하며, 이러한 항은 [[분배법칙]]을 이용하여 하나로 묶을 수 있다. 변수 자체가 어떤 것인지는 관계가 없으며 [[계수]]도 일치할 필요가 없다. 곱셈의 [[교환법칙]]에 의해 변수가 곱해진 순서 또한 중요하지 않다. 예를 들어, <math>8xz^2 y</math>와 <math>-5xyz^2</math>는 동류항이지만, <math>3abc</math>와 <math>3ghi</math>는 동류항이 아니다. 또한, 모든 상수항은 동류항이다. == 동류항 정리 == {{위키낱말사전|동류항}} 동류항들은 분배법칙을 이용하여 하나의 항으로 축약될 수 있다. 이러한 과정을 통해 주어진 식을 단순화하여 파악하기 쉽도록 만든다. 예를 들어 다음과 같이 계산된다. :<math>x^2 - 2x^2 = (1-2)x^2 = -x^2</math> {{토막글|수학}} [[분류:다항식]] [[분류:중등수학]]
이 문서에서 사용한 틀:
틀:Lang
(
원본 보기
)
틀:위키낱말사전
(
원본 보기
)
틀:위키데이터 속성 추적
(
원본 보기
)
틀:토막글
(
원본 보기
)
동류항
문서로 돌아갑니다.
둘러보기 메뉴
개인 도구
로그인
이름공간
문서
토론
한국어
보기
읽기
원본 보기
역사 보기
더 보기
검색
둘러보기
대문
최근 바뀜
임의의 문서로
미디어위키 도움말
특수 문서 목록
도구
여기를 가리키는 문서
가리키는 글의 최근 바뀜
문서 정보